Market Basket Analysis Data Groceries Menggunakan Equivalence Class Transformation

Musthofa Galih Pradana1* Khoironi Khoironi2
(1) Universitas Pembangunan Nasional Veteran Jakarta
(2) Politeknik Elektronika Negeri Surabaya
(*) Corresponding Author

Abstract

Peningkatan volume data, pengelolaan dan analisis data menjadi elemen penting bagi pengambilan keputusan bisnis. Salah satu metode yang popular adalah dengan Market Basket Analysis untuk menganalisis data transaksi yang ada pada sebuah data. Pendeketan dengan metode ECLAT adalah salah satu yang bisa dilakukan, karena keunggulannya pada teknik depth-first search. Data yang diolah pada penelitian ini sebanyak 38.766 record data transaksi. Hasil penelitian menunjukan kombinasi 1 itemset dengan minimal support 20 dan 250 mampu menghasilkan data yang relevan, sementara pada kombinasi 2 itemset hanya mampu menghasilkan analisis pada nilai minimal support 10 dikarenakan keterbatasan data pembelian dengan kombinasi 2 item. Waktu eksekusi algoritma ECLAT juga menunjukan kondisi 1 itemset dengan waktu 0,0402 detik dan eksekusi terlambat pada kondisi 2 item-set 8,773 detik.

Keywords

Asosiasi, ECLAT, Groceries, Data

Full Text:

PDF

References

Abbasi, S., & Moeini, A. (2021). BloomEclat: Efficient Eclat Algorithm based on Bloom filter. In Journal of Algorithms and Computation (Vol. 53, Issue 1). http://jac.ut.ac.ir

Akhmad Khabrun Siregar, B. A. K. A. P. K. S. (2018). Perbandingan Algoritme FP-Growth dan Eclat untuk Analisis Pola Pembelian Konsumen pada Toko “X.” CITISEE.

Business Analytics Institute. (2024). Market Basket Analysis for Business Growth.

Galit Shmueli, Peter C. Bruce, Peter Gedeck, Inbal Yahav, & Nitin R. Patel. (2023). Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R. Wiley.

George Dimitoglou, Leonidas Deligiannidis, & Hamid Arabnia. (2024). Big Data, Data Mining and Data Science: Algorithms, Infrastructures, Management and Security (Intelligent Computing Book 2) (George Dimitoglou, Leonidas Deligiannidis, & Hamid Arabnia, Eds.). De Gruyter.

Iqbal Sarker, Alan Colman, Jun Han, & Paul Watters. (2022). Context-Aware Machine Learning and Mobile Data Analytics: Automated Rule-based Services with Intelligent Decision-Making. Springer.

Krishnan, M. S., Nair, A. S., & Sebastian, J. (2022). Comparative Analysis of Apriori and ECLAT Algorithm for Frequent Itemset Data Mining (pp. 489–497). https://doi.org/10.1007/978-981-16-3675-2_37

Lin, N., & Win, T. (2024). Optimizing the Performance of the ECLAT Algorithm using K-means Clustering for Frequently Itemset Mining for Large Datasets. 2024 5th International Conference on Advanced Information Technologies (ICAIT), 1–6. https://doi.org/10.1109/ICAIT65209.2024.10754926

Man, M., Jalil, M. A., & Bakar, W. A. W. A. (2023). Fi-Eclat: An enhancement of incremental Eclat algorithm. 060006. https://doi.org/10.1063/5.0110230

Mohapatra, D., Tripathy, J., Mohanty, K. K., & Nayak, D. S. K. (2021). Interpretation of Optimized Hyper Parameters in Associative Rule Learning using Eclat and Apriori. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 879–882. https://doi.org/10.1109/ICCMC51019.2021.9418049

Omran, O. M. Ben. (2023). Using ECLAT Algorithm for Privacy Preserving on Publishing Data. 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), 407–412. https://doi.org/10.1109/MI-STA57575.2023.10169272

Srinadh, V. (2022a). Evaluation of Apriori, FP growth and Eclat association rule mining algorithms. International Journal of Health Sciences, 7475–7485. https://doi.org/10.53730/ijhs.v6nS2.6729

Srinadh, V. (2022b). Evaluation of Apriori, FP growth and Eclat association rule mining algorithms. International Journal of Health Sciences, 7475–7485. https://doi.org/10.53730/ijhs.v6nS2.6729

Yusuf Husain, Enny Dwi Oktaviyani, & Sherly Christina. (2023). Analisis Perbandingan Algoritma Apriori, FP-Growth, Dan Eclat dalam Menemukan Pola Pembelian Konsumen. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 3(2), 231–243. https://doi.org/10.24002/konstelasi.v3i2.7007

Zunan Setiawan, Muhammad Fajar , Arif Mudi Priyatno, Anggi Yhurinda Perdana Putri, Mediana Aryuni , Siti Yuliyanti, Harya Widiputra , Budanis Dwi MeilaZunan Setiawan, Muhammad Fajar , Arif Mudi Priyatno, Anggi Yhurinda Perdana Putri, Mediana Aryuni , Siti, A. W. (2023). Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia.



DOI: https://doi.org/10.53514/jco.v5i1.593

Article Metrics

Abstract views: 161 times
PDF Downloaded: 62 times

DOI (PDF): https://doi.org/10.53514/jco.v5i1.593.g336

Refbacks

  • There are currently no refbacks.


___________________________________________________________________ 

Journal Computer Science and Informatic Systems:J-Cosys
ISSN 2776-9690 (online)
Managed by: Fakultas Teknologi Bisnis dan Sains (FTBS)
Published by: Universitas Dharma Wacana
W: https://e-jurnal.dharmawacana.ac.id/index.php/JCO
  Email: lppmstmikdw@gmail.com

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons License